Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere
نویسندگان
چکیده
Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.
منابع مشابه
Temporal Trends and Spatial Variability of Vegetation Phenology over the Northern Hemisphere during 1982-2012
Satellite-derived vegetation phenology has been recognized as a key indicator for detecting changes in the terrestrial biosphere in response to global climate change. However, multi-decadal changes and spatial variation of vegetation phenology over the Northern Hemisphere and their relationship to climate change have not yet been fully investigated. In this article, we investigated the spatial ...
متن کاملEvaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs
Leaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. OPEN ACCESS Remote Sens. 2013, 5 4820 This provides a unique opportunity to validate LAI estimates from multiple vegetation models. ...
متن کاملTemperature Sensitivity of Canopy Photosynthesis Phenology in Northern Ecosystems
Northern Hemisphere terrestrial ecosystems have been recognized as areas with large carbon uptake capacity and sinks and are sensitive to temperature change. However, the temperature sensitivity of ecosystem carbon uptake phenology in different biomes of northern ecosystems has not been well explored. In this study, based on our previous effort in characterizing canopy photosynthesis phenology ...
متن کاملA Novel Large-Scale Temperature Dominated Model for Predicting the End of the Growing Season
Vegetation phenology regulates many ecosystem processes and is an indicator of the biological responses to climate change. It is important to model the timing of leaf senescence accurately, since the canopy duration and carbon assimilation are strongly determined by the timings of leaf senescence. However, the existing phenology models are unlikely to accurately predict the end of the growing s...
متن کاملUsing satellite data to improve the leaf phenology of a global terrestrial biosphere model
Correct representation of seasonal leaf dynamics is crucial for terrestrial biosphere models (TBMs), but many such models cannot accurately reproduce observations of leaf onset and senescence. Here we optimised the phenology-related parameters of the ORCHIDEE TBM using satellite-derived Normalized Difference Vegetation Index data (MODIS NDVI v5) that are linearly related to the model fAPAR. We ...
متن کامل